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Abstract. Signal recovery from incomplete or partial frequency information is a fundamen-
tal problem in harmonic analysis and applied mathematics, with wide-ranging applications
in communications, imaging, and data science. Historically, the classical uncertainty princi-
ples—such as those by Donoho and Stark—have provided essential bounds relating the sparsity
of a signal and its Fourier transform, ensuring unique recovery under certain support size con-
straints.

Recent advances have incorporated additive combinatorial notions, notably additive energy,
to refine these uncertainty principles and capture deeper structural properties of signal sup-
ports. Building upon this line of work, we present a strengthened additive energy uncertainty
principle on the finite group Zd

N , introducing explicit correction terms that measure how far
the supports are from highly structured extremal sets like subgroup cosets.

Our main theorems deliver strictly improved bounds over prior results whenever the product
of the support sizes differs from the ambient dimension, offering a more nuanced understanding
of the interplay between additive structure and Fourier sparsity. Importantly, we leverage
these improvements to establish sharper sufficient conditions for unique and exact recovery of
signals from partially observed frequencies, explicitly quantifying the role of additive energy
in recoverability.

These results advance the theory of discrete signal recovery by providing stronger, more
precise guarantees that bridge harmonic analysis and additive combinatorics, and open new
pathways for analyzing sparsity and structure in finite discrete settings.
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1. Introduction

Let f : Zd
N → C be a function on the d-dimensional module over ZN := Z/NZ, where N ≥ 2

is an arbitrary positive integer. Our convention is to define the discrete Fourier transform
(DFT) of f by f̂ : Zd

N → C such that for m ∈ Zd
N

f̂(m) := N−d/2
∑
x∈Zd

N

f(x)χ(−m · x), (1)

where χ(t) := e
2πit
N . We can then recover f using the inverse Fourier transform

f(x) = N−d/2
∑

m∈Zd
N

f̂(m)χ(m · x). (2)

The problem of signal recovery is an inverse problem, where we aim to reconstruct the
original function f from a given set of observations of its transform f̂ . This paper aims
to improve the conditions that are sufficient for the unique and exact recovery. The initial
conditions are derived directly from the classical Fourier uncertainty principle. Specifically,
Donoho and Stark established the following result, formulated here in arbitrary dimensions.

Theorem 1.1 ([DS89]). Let f : Zd
N → C be a finite signal in Zd

N with supp(f) = E ⊆ Zd
N

being the set of non-zero entries. Suppose that the set of unobserved frequencies {f(m)}m∈Zd
N

is the set supp(f̂) = M ⊆ Zd
N . Then the signal f can be recovered uniquely from the observed

frequencies if

|E| · |M | < Nd

2
. (3)

However, Aldahlef at el. recently demonstrated that incorporating additive combinatorial
structure, specifically through additive energy, yields stronger uncertainty principles.

The additive energy of a set A ⊂ Zd
N is defined as:

Definition 1.2 (Additive Energy, [AII+25]). Let A ⊂ Zd
N . The additive energy of A, denoted

by Λ(A), is given by

Λ(A) = #{(x1, x2, x3, x4) ∈ A4 | x1 + x2 = x3 + x4}.

In Theorem 1.8. of [AII+25], the authors showed that additive energy could be incorporated
into the uncertainty principle in the following way.

Theorem 1.3 (Theorem 1.8, [AII+25]). Let f : Zd
N → C be a nonzero function with support

E = supp(f) and Fourier support Σ = supp(f̂). Then

Nd ≤ |E|Λ2(Σ)
1/3, (4)

and, by symmetry,

Nd ≤ |Σ|Λ2(E)1/3.

Since the expression is symmetric in E and Σ, Fourier inversion allows us to interchange
the roles of the support and the Fourier support. When Λ2(Σ) < |Σ|3, Theorem 1.3 yields a



stronger bound than the standard uncertainty principle. In contrast, if Σ = a +H is a coset
of a subgroup H ≤ Zd

N , then Λ(Σ) = |Σ|3, and the two principles coincide.
Our main contribution is a strengthened uncertainty principle with explicit correction terms

that vanish precisely in the extremal case. We prove:

Nd ≤ |E|
(
Λ2(Σ)− C(E,Σ)

)1/3
, (5)

Nd ≤ |Σ|
(
Λ2(E)− C(Σ, E)

)1/3
,

where C(E,Σ) is a non-negative constant depending on E and Σ, which vanishes exactly when
the equality Nd = |E| |Σ| holds. In this case, it follows that both E and Σ achieve maximal
additive energy, that is,

Λ2(E) = |E|3 and Λ2(Σ) = |Σ|3.
This maximal additive energy characterizes highly structured sets such as cosets of subgroups

in Zd
N . When Nd ̸= |E| |Σ|, the additive energy uncertainty inequalities (5) provide a strict

improvement over the additive uncertainty principle (4) introduced in [AII+25].
Our main result is the following uncertainty principle.

Theorem 1.4 (Stronger Additive Uncertainty Principle). Let f : Zd
N → C be a nonzero

function (signal) with support supp(f) = E and Fourier support supp(f̂) = Σ.

Nd ≤ |E|

(
Λ2(Σ)− |Σ|2

(
1− Nd

|E||Σ|

)
− |Σ|(|Σ| − 1)

(
1−

√
Nd

|E||Σ|

√
Λ2(E)

|E|3

))1/3

(6)

Nd ≤ |Σ|

(
Λ2(E)− |E|2

(
1− Nd

|E||Σ|

)
− |E|(|E| − 1)

(
1−

√
Nd

|E||Σ|

√
Λ2(Σ)

|Σ|3

))1/3

.

This result fits the general form of the new uncertainty principle stated in (5), with explicit
constants given by

C(E,Σ) = |Σ|2
(
1− Nd

|E||Σ|

)
+ |Σ|(|Σ| − 1)

(
1−

√
Nd

|E||Σ|

√
Λ2(E)

|E|3

)
,

and

C(Σ, E) = |E|2
(
1− Nd

|E||Σ|

)
+ |E|(|E| − 1)

(
1−

√
Nd

|E||Σ|

√
Λ2(Σ)

|Σ|3

)
.

This theorem sharpens the additive uncertainty principle by subtracting correction terms
C(E,Σ) and C(Σ, E) that quantify how far the supports E and Σ are from this extremal, highly
structured case. When the product |E||Σ| is strictly greater than Nd, the new inequalities
provide a stricter bound than the previously known principle in (4) from [AII+25].
Building on the strengthened additive energy uncertainty principle, we derive a sufficient

condition for the unique recovery of a signal when certain frequencies are unobserved. This



result quantifies how the additive energy of the unobserved frequency set influences recover-
ability.

Theorem 1.5 (Additive Recovery Condition). Suppose frequencies in S ⊆ Zd
N are unobserved,

and that for all subsets T ⊆ Zd
N with |T | ≤ 2|E| the additive energy satisfies

Λ2(T ) ≤ K|T |α,
where K ≥ 0 and 2 ≤ α ≤ 3. If

|E|3
(
Λ2(S)− |E|3|S|(|S| − 1)

[
1−

√
K

(2|E|)3−α

√
Nd

2|E||S|

]

− |E|3|S|2
(
1− Nd

2|E||S|

))
<

N3d

8
,

then the function f can be uniquely recovered.

Therefore, we get better recovery conditions using the stronger additive uncertainty principle
(Theorem 1.4) than was previously derived from the original additive uncertainty principle
established by Aldahlef-Iosevich-Iosevich-Jaimangal-Mayeli-Pack in [AII+25].

2. Background on Signal Recovery

Signal recovery is a fundamental problem in applied mathematics and engineering: given
incomplete or partially missing information about a signal, can we reconstruct the original
signal exactly? In the discrete Fourier setting, this problem is typically phrased as follows.
Let f : Zd

N → C be a discrete signal, and let f̂ denote its discrete Fourier transform. Suppose

that the values of f̂ are missing on a subset S ⊂ Zd
N . The central question is: under what

conditions on the signal f and the set of missing frequencies S can the original signal f be
recovered exactly from the partial information?

A general theoretical condition that guarantees unique recovery of f was established by
Donoho and Stark [DS89]. Suppose we have three functions f, r, g : Zd

N → C that all agree
on the non-missing frequencies m /∈ S, and assume that their supports satisfy |supp(f)| =
|supp(r)| = |supp(g)| = |E|. If the product of the support size of f and the size of the missing
frequency set satisfies

|E||S| < Nd

2
,

then it follows that r = g = f . In other words, under this condition, any two functions that
match on the known frequencies and have the same support size must be identical, which
establishes a uniqueness guarantee for recovery.

The proof, as given in [DS89], elegantly leverages the classical uncertainty principle. The
core idea is to consider the difference function h = r − g of any two candidate signals r and

g that agree with f on the known frequencies. By construction, ĥ is supported on S and
h is supported on at most 2|E| points. Applying the uncertainty principle to this nonzero

function h leads to the inequality Nd ≤ |supp(h)|, |supp(ĥ)| ≤ 2|E||S|, which contradicts the
assumption 2|E||S| < Nd. This contradiction forces h ≡ 0, proving uniqueness.



While Theorem 1.1 provides a clean sufficient condition for unique identifiability, it is pri-
marily an existence result. The practical task of actually reconstructing the signal f from
its partial Fourier measurements is a central problem in the field of sparse recovery or com-
pressed sensing, which is studied in [CRT05, Don06]. The key insight that enabled this field
was the realization that the computationally intractable ℓ0-minimization (which directly seeks
the sparsest solution) can be replaced by its convex relaxation, ℓ1-minimization, under certain

conditions. The key idea is that, given the known frequencies f̂(m) for m /∈ S, the original
signal f can be recovered as the unique minimizer of the ℓ1 norm among all functions that
agree with f̂ on the known frequencies. Formally, the recovery problem is written as

f = argming ∥g∥L1(Zd
N ) subject to ĝ(m) = f̂(m) for all m /∈ S.

The guarantee that ℓ1 minimization indeed recovers f under the condition |E||S| < Nd/2 is
a central result also established by Donoho and Stark [DS89].

As shown in [DS89], for any function h with supp(ĥ) ⊆ S, the following inequality holds:

∥h∥L1(E) ≤
|E||S|
Nd

∥h∥L1(Zd
N ).

The recovery proof then proceeds by considering a candidate minimizer g and the difference

function h = g − f . Since ĥ is supported on S, the above inequality applies. Under the
assumption |E||S| < Nd/2, one can show that the ℓ1 norm of h on the complement of the true
support Ec must be strictly greater than its norm on E. This leads to a contradiction with the
assumption that g has a smaller or equal ℓ1 norm than f , thereby proving that f is the unique
minimizer. For the complete and detailed argument, we refer the reader to the original proof
in [DS89]. To illustrate these concepts concretely, consider a simple one-dimensional example:

Example 2.1. Let f : Z4 → C be given by

f = (1, 0, 0, 2), so that supp(f) = E = {0, 3}.
The discrete Fourier transform of f is

f̂ = (f̂(0), f̂(1), f̂(2), f̂(3)) = (3, 1− i,−1, 1 + i).

Suppose that during transmission, the values at frequencies S = {1, 2} are lost. Solving the ℓ1

minimization problem

min
g

∥g∥L1(Z4) subject to ĝ(0) = 3, ĝ(3) = 1 + i

recovers f exactly.
For instance, consider the candidate g = (2, 1, 0, 0), which satisfies the constraints at the

known frequencies. Its ℓ1 norm is

∥g∥L1 = |2|+ |1|+ |0|+ |0| = 3,

while the true signal has
∥f∥L1 = |1|+ |0|+ |0|+ |2| = 3.

Slight perturbations of g that maintain the constraints would increase the ℓ1 norm above that
of f , demonstrating that f indeed minimizes the ℓ1 norm and is therefore recovered exactly.



These results, combining uniqueness guarantees from uncertainty principles and constructive
recovery via ℓ1 minimization, form the foundation for much of the modern theory of signal
recovery. For a more comprehensive discussion, including extensions to higher dimensions and
alternative reconstruction methods, see [IM25].

The incorporation of additive combinatorial structure into this framework represents a sig-
nificant theoretical advance. Sets with high additive energy correspond to highly structured
configurations such as arithmetic progressions or cosets of subgroups, while sets with low
additive energy exhibit less additive structure. The key observation is that less structured
sets—those with lower additive energy—admit stronger recovery guarantees.

For a set A ⊆ Zd
N , the normalized additive energy Λ2(A)/|A|3 ranges from |A|−1 (for generic

sets) to 1 (for cosets of subgroups). This normalization quantifies how far a set deviates
from maximal additive structure, providing a parameter that our strengthened uncertainty
principles exploit to improve recovery conditions.

3. Proofs of Theorem 1.4

Proof of Theorem 1.4. Define 1x,y,a = 1E(x)1E(y)1E(x+a)1E(y+a). By Fourier inversion, we
have ∑

m∈Σ

|f̂(m)|4 = N−2d
∑
m∈Σ

∑
x,y,z,w∈E

f(x)f(y)f(z)f(w)χ(m · (x− y + z − w))

≤ N−d
∑

x+z=y+w
x,y,z,w∈E

f(x)f(y)f(z)f(w)

≤ N−d
∑

x,y,a∈Zd
N

|f(x)f(y)f(x+ a)f(y + a)|1x,y,a

Therefore,

N3d
∑
m∈Σ

|f̂(m)|4 ≤ N2d
∑

x,y,a∈Zd
N

|f(x)f(y)f(x+ a)f(y + a)|1x,y,a

By Cauchy Schwarz and another application of Fourier inversion, we have

N2d
∑

x,y,a∈Zd
N

|f(x)f(y)f(x+ a)f(y + a)|1x,y,a

≤ N2d
∑

x,y,a∈Zd
N

|f(x)f(x+ a)|21x,y,a

≤
∑

m1,...,m4

|f̂(m1)f̂(m2)f̂(m3)f̂(m4)|

∣∣∣∣∣∣
∑

x,y,a∈Zd
N

χ(x · (m1 −m2 +m3 −m4)χ(a · (m3 −m4))1x,y,a

∣∣∣∣∣∣
=

∑
m1,m2,m3,m4
N1=m1−m2
N2=m3−m4

|f̂(m1)f̂(m2)f̂(m3)f̂(m4)|

∣∣∣∣∣∣
∑

x,y,a∈Zd
N

χ(x ·N1)χ((x+ a) ·N2)1x,y,a

∣∣∣∣∣∣



≤ I + II + III,

where now we split into cases

I. x ̸= y, a ̸= 0
II. x = y
III. x ̸= y, a = 0

In what follows, we bound I, II, and III above by terms of the form (. . . )
∑

m∈Σ |f̂(m)|4 so that
we may cancel to recover an improved uncertainty principle.
Case I: Notice that the sum ∑

x,y,a∈Zd
N ̸=y,a̸=0

1E(x)1E(y)1E(x+ a)1E(y + a)

counts the number of triples (x, y, a) with x ̸= y and a ̸= 0 such that all four points x, y, x+a,
and y+ a lie in E. This is equivalent to counting quadruples (x, y, z, w) ∈ E4 where z = x+ a
and w = y + a for some nonzero a, and x ̸= y. Since a = z − x = w − y ̸= 0, the conditions
x ̸= y and a ̸= 0 imply that x ̸= z and x ̸= w. Thus, we have the identity:

(x, y, a) : x, y, x+ a, y + a ∈ E, , x ̸= y, , a ̸= 0

= (x, y, z, w) ∈ E4 : z = x+ a, , w = y + a, , a ̸= 0, , x ̸= y

= (x, y, z, w) ∈ E4 : x+ y = z + w, , x ̸= z, , x ̸= w.

This counts all additive quadruples (x, y, z, w) where the pair (z, w) is distinct from both (x, y)
and (y, x). The total additive energy Λ2(E) counts all quadruples satisfying x+y = z+w. The
only quadruples not counted in the above expression are the degenerate cases where (z, w) is
identical to (x, y) or (y, x). The number of these trivial quadruples is |E|2 (for (z, w) = (x, y))
plus |E|2 (for (z, w) = (y, x)), but the |E| quadruples where x = y in both pairs are counted
twice. Therefore, the number of non-trivial quadruples is:

Λ2(E)− 2|E|2 + |E|
Using the triangle inequality and the above identity, we see that

I =
∑

m1,...,m4

|f̂(m1) . . . f̂(m4)|

∣∣∣∣∣∣∣∣
∑

x,y,a∈Zd
N

x ̸=y,a̸=0

χ(x ·N1)χ((a+ x) ·N2)1x,y,a

∣∣∣∣∣∣∣∣
=

∑
m1,...,m4

|f̂(m1) . . . f̂(m4)|
∑

x,y,a∈Zd
N

x ̸=y,a̸=0

1x,y,a

= (Λ2(E)− 2|E|2 + |E|)

(∑
m

|f̂(m)|

)4

≤ (Λ2(E)− 2|E|2 + |E|)|Σ|3
(∑

m

|f̂(m)|4
)

(Hölder’s inequality)



Case II: Observe that

∑
N1∈Zd

N

∣∣∣∣∣∑
x

χ(x ·N1)1E(x)

∣∣∣∣∣
2

=
∑

N1∈Zd
N

∑
x,x̃

χ((x− x̃) ·N1)1E(x)

= |E|Nd

First, let us establish that for fixed a, b ∈ Zd
N and mi ∈ Σ, we know ∑

m1−m2=a
m3−m4=b

1

 =

(∑
m2∈Σ

1Σ(m2 + a)

)(∑
m4∈Σ

1Σ(m4 + b)

)
≤ |Σ| · |Σ| = |Σ|2

Let t = x+ a. Then, since x = y,

II =
∑

m1,...,m4

|f̂(m1) . . . f̂(m4)|

∣∣∣∣∣∣
∑

x,a∈Zd
N

χ(x ·N1)χ((a+ x) ·N2)1E(x)1E(x+ a)

∣∣∣∣∣∣
=

∑
N1,N2∈Zd

N

∑
m1−m2=N1
m3−m4=N2

|f̂(m1) . . . f̂(m4)|

∣∣∣∣∣∑
x

χ(x ·N1)1E(x)

∣∣∣∣∣
∣∣∣∣∣∑

t

χ(t ·N2)1E(t)

∣∣∣∣∣
≤

 ∑
N1,N2∈Zd

N

 ∑
m1−m2=N1
m3−m4=N2

|f̂(m1) . . . f̂(m4)|


2

1/2

×

×

 ∑
N1,N2∈Zd

N

∣∣∣∣∣∑
x

χ(x ·N1)1E(x)

∣∣∣∣∣
2 ∣∣∣∣∣∑

t

χ(t ·N2)1E(t)

∣∣∣∣∣
2
1/2

=

 ∑
N1,N2∈Zd

N

 ∑
m1−m2=N1
m3−m4=N2

|f̂(m1) . . . f̂(m4)|


2

1/2

×

 ∑
N1∈Zd

N

∣∣∣∣∣∑
x

χ(x ·N1)1E(x)

∣∣∣∣∣
2


= |E|Nd

 ∑
N1,N2∈Zd

N

 ∑
m1−m2=N1
m3−m4=N2

|f̂(m1) . . . f̂(m4)|


2

1/2

≤ |E|Nd

∑
N1,N2

 ∑
m1−m2=N1
m3−m4=N2

|f̂(m1) . . . f̂(m4)|2


 ∑

m1−m2=N1
m3−m4=N2

1




1/2



≤ |E||Σ|Nd

( ∑
m1,...,m4

|f̂(m1) . . . f̂(m4)|2
)1/2

= |E||Σ|Nd

(∑
m

|f̂(m)|2
)2

≤ |E||Σ|2Nd

(∑
m

|f̂(m)|4
)

(Holder’s inequality)

Case III: We have that

III =
∑

m1,...,m4

|f̂(m1) . . . f̂(m4)|

∣∣∣∣∣∣∣∣
∑

x,y∈Zd
N

x̸=y

χ(x · (m1 −m2 +m3 −m4))1E(x)1E(y)

∣∣∣∣∣∣∣∣
= (|E| − 1)

∑
m1,...,m4

|f̂(m1) . . . f̂(m4)|

∣∣∣∣∣∑
x∈E

χ(x · (m1 −m2 +m3 −m4))

∣∣∣∣∣
Let us look at

∑
m1,...,m4

|f̂(m1) . . . f̂(m4)|

∣∣∣∣∣∑
x∈E

χ(x · (m1 −m2 +m3 −m4))

∣∣∣∣∣
=
∑

M∈Zd
N

∑
m1−m2+m3−m4=M

|f̂(m1) . . . f̂(m4)|

∣∣∣∣∣∑
x∈E

χ(x ·M)

∣∣∣∣∣
≤

 ∑
M∈Zd

N

( ∑
m1−m2+m3−m4=M

|f̂(m1) . . . f̂(m4)|

)2
1/2

×

 ∑
M∈Zd

N

∣∣∣∣∣∑
x∈E

χ(x ·M)

∣∣∣∣∣
2
1/2

≤

 ∑
M∈Zd

N

( ∑
m1−m2+m3−m4=M

1

)( ∑
m1−m2+m3−m4=M

|f̂(m1) . . . f̂(m4)|2
)1/2

× |E|1/2Nd/2

≤ (max
M

{(m1,m2,m3,m4) ∈ Σ4 | m1 −m2 +m3 −m4 = M})1/2



×

( ∑
m1,m2,m3,m4

|f̂(m1) . . . f̂(m4)|2
)1/2

× |E|1/2Nd/2

≤ (max
M

{(m1,m2,m3,m4) ∈ Σ4 | m1 −m2 +m3 −m4 = M})1/2

× |E|1/2|Σ|Nd/2

(∑
m

|f̂(m)|4
)

Estimating the number of quadruples

|(m1,m2,m3,m4) ∈ Σ4 : m1 +m3 = m2 +m4 +M |.

We can say, that by shifting m4 by M, it is the same as

|(m1,m2,m3,m4) ∈ Σ× Σ× Σ× (Σ +M) : m1 +m3 = m2 +m4|

Now, using bound 5.2 from [AII+25], this quantity is bounded by(
Λ2(Σ)

3 Λ2(Σ +M)
)1/4

= Λ2(Σ) as shifting by M does not change the additive energy of Σ

Hence, combining all three parts, we obtain

N3d
∑
m∈Σ

|f̂(m)|4 ≤ I + II + III

≤
(
(Λ2(E)− 2|E|2 + |E|)|Σ|3 + |E||Σ|2Nd + |E|1/2(|E| − 1)|Σ|Λ2(Σ)N

d/2
)

×
∑
m

|f̂(m)|4.

By canceling
∑

m∈Σ |f̂(m)|4 from both sides, rearranging terms, and taking a cube root we
recover the improved uncertainty principle

Nd ≤ |Σ|

(
Λ2(E)− |E|2

(
1− Nd

|E||Σ|

)
− |E|(|E| − 1)

(
1−

√
Nd

|E||Σ|

√
Λ2(Σ)

|Σ|3

))1/3

.

□

4. Proof of Theorem 1.5

Proof of Theorem 1.5. Assume, there exists g : Zd
N → C such that g ̸= f and

ĝ(m) = f̂(m) for m /∈ S and |supp(g)| = |supp(f)| = |E|.

Then, let f = g + h, where h : Zd
N → C. Because h = f − g, then |supp(h)| = |T | =

|supp(f) − supp(g)| ≤ 2|E|. We also know that because ĝ(m) = f̂(m) for m /∈ S, then



supp(ĥ) = Q ⊆ S. Hence by Theorem 1.4, if we exchange supp(f) for supp(f̂), we get

Nd ≤ |T |

(
Λ2(Q)− |Q|2

(
1− Nd

|Q||T |

)
− |Q|(|Q| − 1)

(
1−

√
Nd

|Q||T |

√
Λ2(T )

|T |3

))1/3

We want to get a contradiction with a condition of the theorem to prove that our f is unique.
Let’s take both sides of the equation to the third power:

N3d ≤ |T |3
(
Λ2(Q)− |Q|2

(
1− Nd

|Q||T |

)
− |Q|(|Q| − 1)

(
1−

√
Nd

|Q||T |

√
Λ2(T )

|T |3

))

We know that

|T |3(Λ2(Q)− 2|Q2|+ |Q|) ≤ 8|E|2(Λ2(S)− 2|S2|+ |S|),

because the quantity in the parenthesis on the left represents the number of non-trivial paral-
lelograms in Q. Since Q ⊆ S, then for S that quantity would be larger. For

|T |3
(
|Q|Nd

|T |
+ |Q|2

√
Nd

|Q||T |

√
Λ2(T )

|T |3
+ |Q|

(√
Nd

|Q||T |

√
Λ2(T )

|T |3

))

≤ |T |2|Q|Nd + |T ||Q|3/2
√
Nd · Λ2(T ) + |T ||Q|1/2

√
Nd · Λ2(T )

≤ 4|E|2|S|Nd + 2|E||S|3/2
√

Nd ·K · (2|E|)α + 2|E||S|1/2
√

Nd ·K · (2|E|)α.

Hence, if we combine the two, we would get

8|E|3
Λ2(S)− |S|(|S| − 1)

1−√ K

(2|E|)(3−α)

√
Nd

2|E||S|

− |S|2
(
1− Nd

2|E||S|

) .

From the statement of the theorem, we know

8|E|3
Λ2(S)− |S|(|S| − 1)

1−√ K

(2|E|)(3−α)

√
Nd

2|E||S|

− |S|2
(
1− Nd

2|E||S|

) < N3d.

Hence, combining all the inequalities we get

N3d < N3d,

which is a contradiction, which means f is unique. □



5. Conclusion

We have presented strengthened additive energy uncertainty principles that provide strict
improvements over previously known bounds whenever the product of support sizes differs
from the ambient dimension. Our main theoretical contribution lies in the explicit correction
terms C(E,Σ) and C(Σ, E) that quantify precisely how the additive structure of supports
affects the uncertainty relations.

The key innovation in our approach is the decomposition of Fourier-analytic expressions
into components corresponding to different types of additive configurations—non-degenerate
parallelograms, degenerate line configurations, and point pairs. This decomposition, combined
with careful applications of Hölder’s inequality and additive combinatorial bounds, yields the
improved uncertainty principles.

From a practical perspective, Theorem 1.5 demonstrates that our theoretical improvements
translate directly into enhanced recovery guarantees. For signals and missing frequency sets
with sub-maximal additive energy, our conditions allow recovery from strictly more missing
data than permitted by classical theory or previous additive energy-based bounds.

The correction terms in our uncertainty principles exhibit several notable properties. First,
they vanish precisely when |E||Σ| = Nd and both sets achieve maximal additive energy,
confirming that cosets of subgroups represent the extremal case. Second, they increase as the
additive energy decreases, thereby quantifying how less structured sets enable better recovery.
Finally, they depend on both the support and the Fourier support, capturing the connection
between structure in both domains.

6. Future work

Several directions for further research arise naturally from our results. Inspired by the
identity Λ2(E) = |E|2, it is natural to investigate uncertainty principles involving higher-order
quantities such as

Λk+1(E)− Λk(E)(. . . ),

which enumerate non-degenerate (k+1)-dimensional parallelepipeds. Understanding how these
refinements interact with Fourier concentration may yield sharper structural bounds.

Beyond the classical additive energy, one may consider alternative frameworks such as the
number of solutions to

a+ b+ c+ d = e+ f + g + h,

which arise from the Fourier expansion of∑
x∈Zd

N

|f̂(x)|8.

These higher-order energies could lead to new structural parameters for uncertainty principles.
On the algorithmic side, while ℓ1- and ℓ2-minimization methods are standard in compressed

sensing, it is natural to ask whether analogous recovery guarantees can be obtained via min-
imization in the Uk-norm. Developing such algorithms would directly leverage higher-order
additive structure.



More broadly, extensions to other finite abelian groups and eventually to continuous domains
remain open problems. The adaptation to noisy measurements, rather than complete erasures,
is also essential for applications in signal processing.

In summary, the incorporation of higher-order additive energies, alternative combinatorial
invariants, and Uk-based algorithms may lead to substantial refinements of uncertainty prin-
ciples and recovery guarantees.
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